Upon successful completion of the program, a graduate will:
Create sustainable information and communications technology (ICT) solutions through applications of mathematical, scientific and fundamental engineering concepts, methods and techniques.
Apply appropriate knowledge and skills to identify, formulate, analyze, and solve complex engineering problems for information and communication systems.
Validate conclusions through investigations of complex engineering problems that include relevant experimentation, data collection, analysis, interpretation and synthesis.
Design an ICT system, component, or process that meets regulatory and industry standards and considers, health and safety risks, economic, environmental, cultural and social impacts.
Apply appropriate engineering techniques and tools to identify, formulate, analyze, and solve complex engineering problems in information and communications technology.
Perform as an effective member and leader on a team in multidisciplinary settings, displaying responsibility, critical thinking, integrity, and cultural and social sensitivity.
Communicate complex engineering concepts and solutions accurately and effectively using digital tools, written technical documents and oral presentations to a wide audience.
Explain the role and responsibilities of the professional engineer in society, particularly the role of protection of the public and public interest.
Analyze the impact of engineering activities in legal, economic, social, health, safety, and cultural contexts, with the concepts of sustainable design and environmental stewardship.
Demonstrate ethical conduct, accountability and equity, consistent with the requirement of the engineering profession.
Incorporate economics, business practices, entrepreneurship and project management into the practice of engineering given their limitations.
Develop self-leadership strategies to enhance personal competence and professional effectiveness in response to a rapidly changing world.
A co-op work program (three consecutive work terms, 420 hour each) ensures that work-integrated learning experiences are woven into the curriculum. This provides students with a contextual understanding of the industry and specific sectors they are training for, as well as recognition of the importance of hands-on experience.
Bachelor of Engineering – Information Systems Engineering | ||
Semester 1 | Calculus 1 | |
Linear Algebra | ||
Physics 1 | ||
Introduction to Engineering | ||
Engineering in Society | ||
Technical Communication and Critical Thinking for Engineers | ||
Semester 2 | Calculus 2 | |
Engineering Design | ||
Physics 2 | ||
Engineering Materials | ||
Introduction to Programming | ||
Teamwork and Leadership for Engineers | ||
BREAK | ||
Semester 3 | Discrete Mathematics | |
Digital Systems | ||
Operating Systems | ||
Electronic Circuits | ||
Object-Oriented Programming | ||
Degree Breadth | ||
Semester 4 | Statistics & Probability | |
Embedded Systems | ||
Communication Engineering | ||
Databases | ||
Data Structures & Algorithms | ||
Degree Breadth | ||
BREAK or Optional Work Integrated Learning * | ||
Semester 5 | Introduction to Artificial Intelligence for ISE | |
Computer Architecture | ||
Virtual Platform Technologies | ||
Co-op and Career Preparation | ||
Data Security |
TECHNICAL OPTION: Data Networking & Security |
|
Computer Forensics | ||
IoT Systems 1 |
TECHNICAL OPTION: Internet of Things |
|
Sensor Networks | ||
Degree Breadth | ||
Semester 6 | Software Engineering | |
Wireless Systems | ||
Mobile Applications & Systems | ||
Intrusion Detection & Prevention Systems |
TECHNICAL OPTION: Data Networking & Security |
|
Network Modelling | ||
IoT Systems 2 |
TECHNICAL OPTION: Internet of Things |
|
Real-Time Embedded Systems | ||
Degree Breadth | ||
Mandatory Co-op Work Term 1 | ||
Mandatory Co-op Work Term 2 | ||
Mandatory Co-op Work Term 3 | ||
BREAK | ||
Semester 7 | Capstone Project 1 | |
User Experience Design | ||
Digital Signal Processing | ||
Platform Infrastructure and Security |
TECHNICAL OPTION: Data Networking & Security |
|
Machine Learning | ||
Data Analytics |
TECHNICAL OPTION: Internet of Things |
|
Industrial Networking | ||
Degree Breadth | ||
Semester 8 | Capstone Project 2 | |
Emerging Technology | ||
Cryptography |
TECHNICAL OPTION: Data Networking & Security |
|
Cybersecurity Applications | ||
Machine Learning |
TECHNICAL OPTION: Internet of Things |
|
Cybersecurity | ||
Degree Breadth |
* students interested in work-integrated learning opportunities can choose to participate in an experience such as a virtual innovation challenge, Summer Engineering boot camp, STEM-related outreach activities, industry mentorship, international exchange, service learning, applied research or work in industry.
Our engineering degree programs blend classroom theory with project-based learning, set in Humber’s state-of-the-art facilities.
The Barrett Centre for Technology Innovation is a 93,000 sq. ft. facility, home to the latest in areas such as automation, robotics, systems integration, user experience testing, applied research and work-integrated learning with equipment that is unique to North America.
Key features include interactive technology zones, digital media studios, cutting-edge prototyping and makerspaces, open concept gathering spaces and demonstration areas for new products and technologies.
The Barrett Centre for Technology Innovation is home to Humber’s Advanced Manufacturing Skills Consortium, a group of eight leading industry partners who are working with the college to train students and employees of Canadian companies. Consortium members include Javelin Technologies Inc., Cisco Systems Canada Co., DMG MORI Canada Inc., Festo Didactic Inc., KUKA Robotics Canada Inc., Rockwell Automation Inc., SEW-EURODRIVE Company of Canada Ltd., and SICK Sensor Intelligence.
Students will have interdisciplinary exposure and learn how various fields connect modelling the real world. Experience is gained through work-integrated learning and capstone projects.
The Barrett Centre for Technology Innovation brings students, faculty, industry and the community together to solve real world problems collaboratively. This 93,000 square foot facility provides an opportunity for students to collaborate across multiple disciplines and obtain hands-on experience using cutting edge equipment and facilities, preparing them for the jobs of the future.
Humber awards degree scholarships automatically to graduating high school students based on academic achievement. See the following chart for details. Some of the scholarships are renewable each year if you maintain an average of 80 per cent or more.
95%+ | $4,000 renewable |
90 - 94.9% | $3,500 renewable |
85 - 89.9% | $3,000 renewable |
80 - 84.9% | $2,000 renewable |
75 - 79.9% | $1,500 one time |
To view other Scholarship opportunities, view the Scholarships page >
The technical skills and knowledge covered in this program are in high demand as industry explores the use of innovative and advanced technologies to generate, process, manage, store, and communicate their information in a secured manner through human-to-machine and machine-to-machine application platforms.
Some specific career options of graduates include, but are not limited to, information systems analysts and consultants, computer programmers and software developers, software engineering, embedded systems designers, IoT system designers, IoT programmers, IoT hardware developers, IoT specialists, IoT product developers, wireless data network engineering, network systems engineering, network designer, network analysts, cybersecurity specialists, cybersecurity engineering, and cybersecurity analysts.
Canadian Engineering Accreditation Board (CEAB)
The Bachelor of Engineering – Information Systems Engineering is designed to meet the accreditation requirements of the Canadian Engineering Accreditation Board (CEAB). Humber will be eligible to apply for CEAB accreditation upon the graduation of the first cohort of students.
START DATE | LOCATION | STATUS |
---|---|---|
September 2021 | North | Open |
START DATE | LOCATION | STATUS |
---|---|---|
September 2021 | North | Open |
Faculty of Applied Sciences & Technology Events
Faculty of Applied Sciences & Technology News
No news at this time.
Humber College has been granted a consent by the Ministry of Colleges and Universities to offer this applied degree for a seven-year term starting September 3, 2020. Humber College shall ensure that all students admitted to this above-named program during the period of consent will have the opportunity to complete the program within a reasonable time frame.
Every attempt is made to ensure that information contained on this website is current and accurate. Humber reserves the right to correct any error or omission, modify or cancel any course, program, fee, timetable or campus location at any time without prior notice or liability to users or any other Person.
On October 21, 2019, the Provincial Government of Ontario announced the renaming of the Ministry of Training, Colleges and Universities (MTCU) to the Ministry of Colleges and Universities (MCU). Both names may appear on this website.